
www.kerlabs.com

Communication system:
current status and future developments

05/02/07 www.kerlabs.com 2

Outlines

Janitor

deprecate RPC mechanism

remove virtual-node mechanism

Features

transparent switch between in-interrupt operations
and work-queue-like operations

efficient pack/unpack

canceled transaction

communication failure support

time management support

in-interrupt / work-queue-like operations

need efficient small request management

need to support work-queue-like mechanism in order to:

handle burst of requests

support blocking handlers

Add a TRANSACT_AM flag

declare a callback “active-message” aware

By default work-queue-like operations

RPC mechanism

keep the current API

port the engine on top of transaction

Benefits:

remove duplicated code

one simple interface in order to define

active message (non blocking handler)

work-queue like action (might blocking handler)

Remove the bunch of service_manager threads.

Virtual-node mechanism

node to processes communication

Pb: how to broadcast a request to migrating processes ?

Need a reliable multi-cast support

new comm protocol dedicated to this

Pack/Unpack

Current implementation:

one pack == one message (regardless the size)

Need to aggregate fragments of transaction in order

to save the bandwidth

to reduce the pressure on the receive side

Canceled transaction

with transaction, request are handled packets per packets

after the first packet, we may decide to discard the current
transaction

out of memory

“useless” request

Need to be able to stop the receive operation:

krg_transact_cancel(desc)

advertise the other side of this decision

krg_transact_discard(desc)

silently discard all the future packet in this transaction

Communication failure support

Network layer supposed to be reliable

all sent messages are supposed delivered

transaction are supposed to complete (ie: execute the
callback)

What's happen in a node failure case ?

transaction will be blocked:

sender: waiting for an ack

receiver: waiting for some packets

Need to advertise to upper layers

Current transaction take care of successful transaction

need to add one callback dedicated to the failure case

keep the same kind of interface

provide a set of two callbacks (cb and failure_cb)

Time management support

How to avoid time travel ?

process might migrate in the past

Can't have the same time on all the nodes

Need to ensure that time is always increasing

Need to embed time informations in:

migration operations

all or periodic messages (heartbeat?)

Conclusions

Communication layer quite stable

New features are about:

efficiency

cluster changes support

Features list is not closed

No particular schedule decided

I'm not forgetting dynamic streams:

full rewrite is needed

